
Data: Descriptive Statistics
and Tabulation

what you will leaRn in thiS chapteR:

➤➤ How to summarize data samples

➤➤ How to use cumulative statistics

➤➤ How to create summary tables

➤➤ How to cross-tabulate

➤➤ How to test for different object types

Important elements in data analysis include summary and descriptive statistics. These provide
a shorthand way of describing and summarizing your data, which is important in pointing
you towards the correct analytical procedure and helping you understand your data. There
are three main ways you can describe or summarize your data:

➤➤ Summary statistics

➤➤ Tabulation

➤➤ Graphical

In this chapter you will learn about using summary statistics to provide a shorthand way of
describing your data as opposed to merely listing the contents. You will also look at tabulation
as a method to create summaries. Tables can split your data into manageable chunks that show
you patterns that you would otherwise miss. Producing a graphical summary of your data is also
important because a visual impression can convey more to a reader than numerical values; these
are the subjects of Chapter 5.

4

108 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

SummaRy commandS

An essential starting point with any set of data is to get an overview of what you are dealing
with. There are a few ways to go about doing this. You might start by using the ls() command
to see what named objects you have. You can then type the name of one of the objects to view its
contents. However, if the object contains a lot of data, the display may be quite long (and some-
what overwhelming); you will want a more concise method to examine objects. You could use the
str() command, which shows you something about the structure of the data. Take, for instance,
the following data frame called grass. This contains two columns: one is titled rich and relates
to the number of plant species found in quadrats and the other is titled graze and relates to the
mowing treatment of the site:

> grass
 rich graze
1 12 mow
2 15 mow
3 17 mow
4 11 mow
5 15 mow
6 8 unmow
7 9 unmow
8 7 unmow
9 9 unmow

In this case, there are not too many observations so you can easily see all the data. If you use the
str() command like so, you see a more concise summary of the grass object:

> str(grass)
'data.frame': 9 obs. of 2 variables:
 $ rich : int 12 15 17 11 15 8 9 7 9
 $ graze: Factor w/ 2 levels "mow","unmow": 1 1 1 1 1 2 2 2 2

However, the str() command is designed to help you examine the structure of a data object rather
than providing a statistical summary. By contrast, the summary() command is designed to give a
quick statistical summary of data objects. The output you get depends on the object you are looking
at. In this case there is a data frame so each column is summarized:

> summary(grass)
 rich graze
 Min. : 7.00 mow :5
 1st Qu.: 9.00 unmow:4
 Median :11.00
 Mean :11.44
 3rd Qu.:15.00
 Max. :17.00

Here you see some basic statistics for the numeric column; you can see the largest and smallest values
as well as central (median and mean) measures. The second column does not contain numbers, so
you see a list of the different factors along with a count for each. Here you see five observations for
the mow treatment but only four replicates for the unmow treatment.

Summary Commands ❘ 109

If your data contain character items that are in quotes, they are treated as standard characters rather
than as factors. When you attempt a summary() you get slightly different results. In the following
example, you can see a simple vector in two forms:

> graze
[1] "mow" "mow" "mow" "mow" "mow" "unmow" "unmow" "unmow" "unmow"
> summary(graze)
 Length Class Mode
 9 character character

Here, the data are true characters (notice the quotes) and the summary merely tells you that there
are nine of them. Earlier, you created a data frame using these data alongside a vector of numbers
(the rich data). The resulting data frame converted the character items into factors. They are still
characters (as opposed to numbers), but are handled differently. In most statistical analysis you want
your character data as factors. If you extract the data from the data frame and run a summary(),
you get a different result:

> grass$graze
[1] mow mow mow mow mow unmow unmow unmow unmow
Levels: mow unmow
> summary(grass$graze)
 mow unmow
 5 4

The summary() command is therefore more useful; you can see two factors and the number of
observations (replicates) for each.

The summary() command works for both matrix and data frame objects by summarizing the columns
rather than the rows. You can think of vectors as individual columns, and the summary() command
works on vectors in this fashion. When it comes to list objects though, things are not so simple. In the
following example there is a list that comprises two numeric vectors of unequal length:

> grass.l
$mow
[1] 12 15 17 11 15

$unmow
[1] 8 9 7 9

> summary(grass.l)
 Length Class Mode
mow 5 -none- numeric
unmow 4 -none- numeric

The summary() command looks at the object as a series of columns, but because a list does not have
any columns, you get a simpler result. You can get the “proper” summary by applying the command
to each item in the list. However, you do need to specify the name exactly:

> grass.l$mow
[1] 12 15 17 11 15
> summary(grass.l$mow)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 11 12 15 14 15 17

110 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

In the preceding example you see that by adding the $ you can extract an item from the list and the
summary() command works as you expect.

It is sometimes useful to see what the columns are called, especially when the data are in a large data
frame. Similarly, on some occasions you need a reminder of the row names. You can use the names()
command and its variants, which you met previously. Table 4-1 is a reminder of these options.

taBle 4-1: Summary of Commands to Find or Add Names to Rows and Columns of Data Objects

command explanation

names() Works on list or data frame objects . Gets or sets names for columns of
a data frame or the elements of a list .

row.names() Works on matrix or data frame objects .

rownames() Works on matrix or data frame objects .

colnames() Works on matrix or data frame objects .

dimnames() Gets row and column names for matrix or data frame objects .

SummaRizing SampleS

In Chapter 2, you looked at some simple math. In general you were operating on simple numbers;
that is, you looked at single values as opposed to a set of numbers that formed a sample. When
you have repeated measurements (that is, a sample) you usually want to summarize the data by
showing things like the average. In R you have a variety of commands that operate on samples;
these samples of data might be individual vectors, or they may be columns in a data frame or part
of a matrix or list.

Summary Statistics for vectors
The simplest data object you will encounter is the vector. A vector is a single column of values—a one-
dimensional object. There are a variety of simple summary statistics that can be applied to a vector of
numbers, some of which you will meet shortly. In general there are two kinds of summary commands:

➤➤ Commands that produce a single value as a result

➤➤ Commands that produce multiple values as a result

The following sections deal with each of these kinds of summary commands.

Summary Commands With Single Value Results
You can use several commands to help you summarize simple numeric data. Table 4-2 shows some
of the commands that produce a single value as their result.

Summarizing Samples ❘ 111

taBle 4-2: Commands that Produce a Single Value as a Summary Statistic

command explanation

max(x, na.rm = FALSE) Shows the maximum value . By default NA values are not
removed . A value of NA is considered the largest unless
na.rm = TRUE is used .

min(x, na.rm = FALSE) Shows the minimum value in a vector . If there are NA values, this
returns a value of NA unless na.rm = TRUE is used .

length(x) Gives the length of the vector and includes any NA values . The
na.rm = instruction does not work with this command .

sum(x, na.rm = FALSE) Shows the sum of the vector elements .

mean(x, na.rm = FALSE) Shows the arithmetic mean .

median(x, na.rm = FALSE) Shows the median value of the vector .

sd(x, na.rm = FALSE) Shows the standard deviation .

var(x, na.rm = FALSE) Shows the variance .

mad(x, na.rm = FALSE) Shows the median absolute deviation .

In the following activity you will examine some of the simple summary statistics on some numeri-
cal vectors.

tRy it out Using Summarizing Commands on a Sample

Use the data2 and unmow data objects from the Beginning.RData file for this activity. You will
be using some simple summarizing commands on these data.

 1 . Type the name of the object you will be examining, in this case data2:

> data2
 [1] 3 5 7 5 3 2 6 8 5 6 9 4 5 7 3 4

 2 . Display the average of the sample as a mean value:

> mean(data2)
[1] 5.125

 3 . Now determine the largest value in the sample:

> max(data2)
[1] 9

 4 . Next determine the smallest value in the sample:

> min(data2)
[1] 2

112 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

5 . Look now at how many items are in the sample:

> length(data2)
[1] 16

6 . Now look at a different data sample, the unmow object:

> unmow
[1] 8 9 7 9 NA

7 . Work out the standard deviation of the complete unmow sample:

> sd(unmow)
[1] NA

8 . Calculate the standard deviation but remove NA items with an additional instruction:

> sd(unmow, na.rm = TRUE)
[1] 0.9574271

How It Works

The various commands operate on the vector of values to return a simple result. However, if NA items
are present the final value will also be NA. For most commands you can ensure that any NA items are
ignored by adding the na.rm = TRUE instruction to the command. Now you get a “proper” result.

NOTE Many summarizing commands use the na.rm instruction to eliminate NA
items from the summary. However, this is not universal, the length() command
does not use na.rm for example.

Omitting NA Items
The length() command does not use the na.rm instruction so you need a way to overcome
this; fortunately there is a solution. You can use the na.omit() command to strip out NA items.
Essentially, you use this to temporarily remove NA items like so:

> length(na.omit(unmow))
[1] 4

Altering Sample Length
You can use the length() command to alter the length of a vector by setting it to a numeric value.
The vector is shortened if your value is less than the current setting. If the setting is longer than the
current setting, NA items are added to make it the required length. This can be useful if you want
to make a data frame from vectors of unequal length; you can set the length of all vectors to be the
same as the longest one:

> unmow
[1] 8 9 7 9 NA
> length(unmow)
[1] 5

Summarizing Samples ❘ 113

> length(unmow) = 4
> unmow
[1] 8 9 7 9
> length(unmow) = 6
> unmow
[1] 8 9 7 9 NA NA

In the preceding example, the original vector contained five elements but one was NA, producing
a length of five. When you set the length to four, the last element (NA in the preceding example) is
stripped off. When you reset the length to six, you get an additional two NA items at the end.

Summary Commands With Multiple Results
So far the commands you have used have produced a single value as a result. However, many
commands produce several values. When you looked at some of the mathematical operations in
Chapter 2, you applied your math to simple numbers. If you apply a math function to a vector,
you get an answer back for each element of the vector like so:

> data2
 [1] 3 5 7 5 3 2 6 8 5 6 9 4 5 7 3 4
> log(data2)
 [1] 1.0986123 1.6094379 1.9459101 1.6094379 1.0986123 0.6931472 1.7917595
 [8] 2.0794415 1.6094379 1.7917595 2.1972246 1.3862944 1.6094379 1.9459101
[15] 1.0986123 1.3862944

Of course, the log() command is not one you would normally think of as a summary command.
Summary commands that do produce multiple results are illustrated here:

> summary(data2)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.000 3.750 5.000 5.125 6.250 9.000

> quantile(data2)
 0% 25% 50% 75% 100%
2.00 3.75 5.00 6.25 9.00

> fivenum(data2)
[1] 2.0 3.5 5.0 6.5 9.0

You have already met the basic summary() command. For this simple numeric vector you get two
measures of centrality: the mean and median. You also get the extremes as well as the inter-quartile
values. The quantile() command shows the quartiles by default; that is, the 0%, 25%, 50%, 75%
and 100% quantiles. However, you can select other quantiles. The command allows other instruc-
tions as follows:

quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE)

The x part is the data object you wish to examine. The probs = instruction enables you to select
one or several quantiles to display, defaulting to 0, 0.25, and so on as you saw in the preceding
example. This is what the seq(0, 1, 0.25) command is doing; setting a start of 0, an end of 1,
and a step of 0.25. This is the same as c(0, 0.25, 0.5, 0.75, 1). The names = instruction tells
R if it should display the name of the quantiles produced. In the following activity you examine
some of the options for the quantile() command for yourself.

114 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

tRy it out Using the quantile() Command

Use the data2 and unmow data objects from the Beginning.RData file for this activity. You will
use the quantile() command on these data.

 1 . Start by looking at the sample vector, data2.

> data2
 [1] 3 5 7 5 3 2 6 8 5 6 9 4 5 7 3 4

 2 . Now look at the 20% quantile:

> quantile(data2, 0.2)
20%
 3

 3 . Next pick out three quantiles, 20%, 50%, and 80%:

> quantile(data2, c(0.2, 0.5, 0.8))
20% 50% 80%
 3 5 7

 4 . Now try some quantiles in non-numeric order:

> quantile(data2, c(0.5, 0.75, 0.25))
 50% 75% 25%
5.00 6.25 3.75

 5 . Select some quantiles but suppress the headings:

> quantile(data2, c(0.2, 0.5, 0.8), names = F)
[1] 3 5 7

 6 . Look at a new data object that contains NA items:

> unmow
[1] 8 9 7 9 NA NA

 7 . Display the basic quantiles for the new sample:

> quantile(unmow)
Error in quantile.default(unmow) :
 missing values and NaN's not allowed if 'na.rm' is FALSE

 8 . Remove the effect of the NA items using the na.rm instruction:

> quantile(unmow, na.rm = T)
 0% 25% 50% 75% 100%
7.00 7.75 8.50 9.00 9.00

How It Works

The quantile() command produces multiple results but you can alter the default to produce quantiles
for a single probability or several (in any order). The names of the quantiles selected are displayed as
percentage labels but you can suppress this using the names = FALSE instruction. If the data contain NA
items, you must remove them using the na.rm = TRUE instruction, otherwise you get an error message.

Summarizing Samples ❘ 115

The fivenum() command produces a similar result to quantile(), but in this case 25% and 75%
quantiles (the inter-quartiles) are replaced by the lower and upper hinge values. These are similar to
the quantiles and for samples with odd-number lengths they are the same:

> dat
[1] 1 2 3 4 5 6
> quantile(dat)
 0% 25% 50% 75% 100%
1.00 2.25 3.50 4.75 6.00

> fivenum(dat)
[1] 1.0 2.0 3.5 5.0 6.0

By default NA items are removed, but you could include the NA using na.rm = FALSE as an instruc-
tion in the command if you want to keep them in (in which case all the quantiles would be NA).

cumulative Statistics
Cumulative statistics are those that are applied sequentially to a series of values. For example, you
may want to track the interest received on an investment. If your data are the interest payments
received then the cumulative sum would give you a running total. You can think of the commands
that calculate cumulative statistics as being in one of two forms:

➤➤ Simple cumulative commands

➤➤ Complex cumulative commands

You will look at both types in this section. Simple commands require only the name of the data
object. For complex commands you have to create more complicated instructions to produce the
desired result.

Simple Cumulative Commands
Table 4-3 shows several simple commands that you can use that return cumulative values.

taBle 4-3: Commands that Produce Cumulative Values

command explanation

cumsum(x) The cumulative sum of a vector

cummax(x) The cumulative maximum value

cummin(x) The cumulative minimum value

cumprod(x) The cumulative product

In the following activity you try out some cumulative statistics for yourself.

116 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

tRy it out Cumulative Statistics

Use the data2 and data5 data objects from the Beginning.RData file for this activity; this
contains the data objects that you will need to produce cumulative statistics.

 1 . Start by looking at a simple numerical vector, data2.

> data2
 [1] 3 5 7 5 3 2 6 8 5 6 9 4 5 7 3 4

 2 . Determine the cumulative sum of these data:

> cumsum(data2)
 [1] 3 8 15 20 23 25 31 39 44 50 59 63 68 75 78 82

 3 . Now look at the cumulative maximum value of the sample:

> cummax(data2)
 [1] 3 5 7 7 7 7 7 8 8 8 9 9 9 9 9 9

 4 . Try looking at the cumulative minimum:

> cummin(data2)
 [1] 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

 5 . Now look at the cumulative product of the sample:

> cumprod(data2)
 [1] 3 15 105 525 1575 3150
 [7] 18900 151200 756000 4536000 40824000 163296000
[13] 816480000 5715360000 17146080000 68584320000

 6 . Try a cumulative command on a vector of character data (for example, data5):

> data5
 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
> cummax(data5)
 [1] NA NA NA NA NA NA NA NA NA NA NA NA
Warning message:
NAs introduced by coercion

 7 . Now look at a data sample that includes NA items:

> dat.na
[1] 2 5 4 NA 7 3 9 NA 12

 8 . Try a cumulative command on these data:

> cumprod(dat.na)
[1] 2 10 40 NA NA NA NA NA NA

How It Works

The cumulative commands produce the expected result until you try them on a vector of character
data. If you try these on character data you get an error, and your “result” is a list of NA items. If your
numeric vector contains any NA items, the commands will “work” up to the first NA item, and subse-
quently you get NA.

Summarizing Samples ❘ 117

Complex Cumulative Commands
You can use cumulative commands in combination with others to produce additional useful mea-
sures; for example, the running mean. The basic arithmetic mean is the sum divided by the number
of observations. You can get the cumulative sum, but you also need the cumulative number of obser-
vations; you can use the seq() command to help. If you have a sample of numeric values you can
create an index like so:

> data2
 [1] 3 5 7 5 3 2 6 8 5 6 9 4 5 7 3 4
> seq(along = data2)
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In this case you have created a simple index for your sample; you have 16 items. You can also use a
“quick” version like so:

> seq_along(data2)
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

uSing the SeQ() command

The seq() command can be used in more than one way. The main purpose of the
command is to generate sequences of values. You can specify the start point, end
point, and interval for the sequence you require like so:

> seq(from = 1, to = 10, by = 2)
[1] 1 3 5 7 9

The command can be abbreviated, and the following produces the same result:

> seq(1, 10, 2)
[1] 1 3 5 7 9

If you use the along = instruction you can create an index for a vector:

> seq(along = data2)
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

However, if you omit the along = part and specify the vector name you get the
same result:

> seq(data2)
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The seq_along() command is thus the equivalent of using the along = instruc-
tion in the regular seq() command.

If you now combine the cumulative sum and “how far along” you are, you can make a running
mean like so:

> cumsum(data2) / seq(along = data2)
 [1] 3.000000 4.000000 5.000000 5.000000 4.600000 4.166667 4.428571 4.875000
 [9] 4.888889 5.000000 5.363636 5.250000 5.230769 5.357143 5.200000 5.125000

118 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

For other cumulative statistics you may have to be a bit more creative. For example, you might want
to use a running median. None of the cumulative commands can really help you here. The answer
is to use the seq_along() command as an index and container and determine your median as you
step along. The following example and subsequent steps illustrate the process:

> data2
 [1] 3 5 7 5 3 2 6 8 5 6 9 4 5 7 3 4
> md = seq_along(data2)
> md
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
> for(i in 1:length(md)) md[i] = median(data2[1:i])
> md
 [1] 3 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5

 1 . Begin by creating an item called md, which acts as the repository for your final result. In the
meantime you can also use this as an index to help you generate the median.

 2 . Use the for() command to make your median() work 16 times (in this case). The first part
of the command tells R how many times to set the temporary item i.

 3 . Now use the median() command to place a value into your result object (called md); do this
16 times and you end up with a final vector of 16 values, which represents the running median.

 4 . The for() command has two main parts: the first part (in the parentheses) is where you set
the number of times you want to repeat your expression (the second part). It is common to
use i as a variable name in for() commands (think of it as i for index), but there is no rea-
son not to use anything you like!

 5 . Separate the variable from the sequence you want to use with the word in. Finally, create an
expression that uses your repeating variable. The following shows the general form of the
for() command:

for(var in seq) expression

You could easily replace the median part in the example to another command and produce a running
something. In the following example the sd() command is used rather than median() to determine
the running standard deviation:

> md = seq_along(data2)
> for(i in 1:length(md)) md[i] = sd(data2[1:i])
> md
 [1] NA 1.414214 2.000000 1.632993 1.673320 1.834848 1.812654 2.100170
 [9] 1.964971 1.885618 2.157440 2.094365 2.006400 1.984833 2.007130 1.962142

In this example the first item in the result is NA because you cannot calculate a standard deviation
of a single value. You look at the for() command again in Chapter 10, where you learn a bit more
about customizing functions and creating simple scripts and programming.

Summary Statistics for data Frames
So far you have looked to summarize a single vector of data, but there may be times when you want
to summarize a more complicated object. Some of the commands you have used already will work
on more complex objects, and some need a bit of persuading.

Summarizing Samples ❘ 119

generic Summary Commands for Data Frames
Table 4-4 gives a quick guide to the results expected for some of the generic summary commands
you met previously; it is not complete but it covers the more useful summary commands.

taBle 4-4: Summary Commands that Can be Applied to Data Frames

command explanation

max(frame) The largest value in the entire data frame

min(frame) The smallest value in the entire data frame

sum(frame) The sum of the entire data frame

fivenum(frame) The Tukey summary values for the entire data frame

length(frame) The number of columns in the data frame

summary(frame) Gives summary for each column

The list of summary commands that will work on a data frame is quite short. You can always extract
a single vector from your data frame and perform a summary of some sort on that. This approach
will not work for the rows of a data frame though. In general it is better to use more specialized com-
mands when dealing with the rows and columns of data frames. You will meet these commands in
the following sections.

Special Row and Column Summary Commands
Two summary commands are designed especially for row data—rowMeans() and rowSums():

> rowMeans(fw)
 Taw Torridge Ouse Exe Lyn Brook Ditch Fal
 5.5 14.0 10.0 5.5 14.0 24.5 26.5 40.5
> rowSums(fw)
 Taw Torridge Ouse Exe Lyn Brook Ditch Fal
 11 28 20 11 28 49 53 81

In the example here each row has a row name so these are displayed. If you did not have the row
names the values for the various rows would appear as a simple vector of values like so:

> rowSums(mf)
 [1] 274.25 262.15 215.75 240.95 227.95 228.75 197.85 264.75 247.95 262.35 267.35
[12] 264.35 259.05 245.85 229.75 247.45 275.35 253.05 201.25 295.05 275.55 176.85
[23] 204.95 218.85 208.75

Corresponding colSums() and colMeans() commands function in the same manner. In the following
example you see the mean() and colMeans() commands compared:

> colMeans(mf)
 len sp alg no3 bod
 19.640 15.800 58.400 2.046 145.960
> mean(mf)
 len sp alg no3 bod
 19.640 15.800 58.400 2.046 145.960

120 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

You can see that essentially you get the same display/result. These commands also use the na.rm
instruction, and by default this is set to FALSE. If you want to ensure that NA items are removed,
you add na.rm = TRUE as an instruction in the command.

The apply() Command for Summaries on Rows or Columns
The colMeans() and rowSums() commands are designed as quick alternatives to a more general
command, apply(). The apply() command enables you to apply a function to rows or columns of
a matrix or data frame. The general form of the command is like so:

apply(X, MARGIN, FUN, ...)

In this command the MARGIN is either 1 or 2, where 1 is for rows and 2 is for columns. You replace
the FUN part with your command (the function you want to apply) and you can also add additional
instructions if they are appropriate to the command/function you are applying. For example, you
might add the na.rm = TRUE instruction:

> apply(fw, 1, mean, na.rm = TRUE)
 Taw Torridge Ouse Exe Lyn Brook Ditch Fal
 5.5 14.0 10.0 5.5 14.0 24.5 26.5 40.5

In this case you see that the row names of the original data frame are displayed. If your data frame
had no set row names, you would simply see your result as a vector of values like so:

> apply(mf, 1, median, na.rm = TRUE)
 [1] 20 21 22 23 21 21 19 16 16 21 21 26 21 20 19 18 17 19 21 21 22 25 24 23 22

Summary Statistics for matrix objects
A matrix looks like a frame but is not; in effect, the data are a single vector that happens to be split
into rows and columns. In the following example you see a matrix comprised of some numeric values
relating to observations of some common British birds in various habitats:

> bird
 Garden Hedgerow Parkland Pasture Woodland
Blackbird 47 10 40 2 2
Chaffinch 19 3 5 0 2
Great Tit 50 0 10 7 0
House Sparrow 46 16 8 4 0
Robin 9 3 0 0 2
Song Thrush 4 0 6 0 0

You cannot extract parts of a matrix using $ like you could with a data frame, but you can use the
square brackets to retrieve information about any row or column:

> mean(bird[,2])
[1] 5.333333
> mean(bird[2,])
[1] 5.8

The first example returns the mean for the second column, whilst the next example returns the mean
for the second row. You can also use the colMeans() and rowSums() commands like you used before:

> colSums(bird)
 Garden Hedgerow Parkland Pasture Woodland
 175 32 69 13 6

Summarizing Samples ❘ 121

> rowMeans(bird)
 Blackbird Chaffinch Great Tit House Sparrow Robin
 20.2 5.8 13.4 14.8 2.8
 Song Thrush
 2.0

The apply() command also works equally well for a matrix as it does for data frame objects, like so:

>apply(bird, 2, median)
 Garden Hedgerow Parkland Pasture Woodland
 32.5 3.0 7.0 1.0 1.0

In this case you extract the median values for the columns of the matrix. You can also choose certain
elements of the result to display by appending square brackets after the command, as shown in the
following example:

> apply(bird,1,median)[1:2]
Blackbird Chaffinch
 10 3

> apply(bird,1,median)[c(1,2,4)]
 Blackbird Chaffinch House Sparrow
 10 3 8

> apply(bird,1,median)[c(1,2,'Robin')]
 <NA> <NA> Robin
 NA NA 2

> apply(bird,1,median)[c('Blackbird','Robin')]
Blackbird Robin
 10 2

In the first example you display only the first and second items. In the next example you select the first,
second, and fourth items. The third example shows that you cannot mix numbers and text. In the final
example you select the column results you want using their column names (in quotes).

Summary Statistics for lists
List objects do not work in quite the same manner as matrix or data frame objects. As with most of
the summary commands that you have met, many will simply fail to work, so a different approach is
needed. In the following example you have a simple list that is comprised of two vectors of numbers
that are unequal in length:

> grass.l
$mow
[1] 12 15 17 11 15

$unmow
[1] 8 9 7 9

> summary(grass.l)
 Length Class Mode
mow 5 -none- numeric
unmow 4 -none- numeric

122 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

> mean(grass.l)
[1] NA
Warning message:
In mean.default(grass.l) : argument is not numeric or logical: returning NA
> sum(grass.l)
Error in sum(grass.l) : invalid 'type' (list) of argument
> length(grass.l)
[1] 2

The only useful result you get here is the length() command, which confirms that you have two
elements in your list. You could examine each element of the list in turn by using the $ syntax like so:

> mean(grass.l$mow)
[1] 14
> max(grass.l$unmow)
[1] 9

Using $ is fine, but it’s quite tedious if you have more than one or two elements to consider. It is also
not generalized enough; it would be better to have a method that did not rely on individual items
being named (other than the list object). Instead, you can use a special version of the apply() com-
mand that works specifically on list objects. The command is lapply(); think of it as short for “list
apply.” This is easy enough to use—you simply name the list and the function you want to apply to
each list element like so:

> lapply(grass.l, mean, na.rm = TRUE)
$mow
[1] 14
$unmow
[1] 8.25

You are still able to add extra instructions to the command; in this example you ensure that NA
items are removed before the mean() command is applied. The result you get back is in the form of
a list pretty much like the original object. You can change this to produce a “nicer” output using a
variant of the command sapply() like so.

> sapply(grass.l, mean, na.rm = TRUE)
 mow unmow
14.00 8.25

The resulting output is in fact a matrix. This enables you to undertake other manipulations because
a matrix object is a bit easier to deal with than a list. If you want to carry out further manipulations
on the result, make an object to hold the result:

> grass.mn = sapply(grass.l, mean, na.rm = TRUE)

Now you have a new object that can be used later.

SummaRy taBleS

Just as you did with the vector, matrix, list, and data frame objects in Chapter 3, you can manipulate,
alter, and produce table objects using the table() command to summarize a data sample. Using this
command you can create a few special kinds of table objects, including contingency tables and com-
plex (flat) contingency tables. A contingency table is particularly useful when you have a large num-
ber of observations and you want to condense the data into a smaller format. A complex (flat) table

Summary Tables ❘ 123

is a type of contingency table that is useful when creating just one single table as opposed to multiple
ones. Additionally, you can use cross-tabulation to reassemble data into a tabular format as neces-
sary. This section covers how to work with table objects in all of these capacities.

making contingency tables
A contingency table is a way to redraw data and assemble it into a table that shows the layout of the
original data in a manner that allows the reader to gain an overall summary of the original data.
You can create contingency tables using the table() command. The command can handle data in
simple vectors or more complex matrix and data frame objects, as you see shortly. The more com-
plex the original data, the more complex the resulting contingency table will be.

Creating Contingency Tables from Vectors
The simplest data object from which you can create a contingency table is a vector. In the following
example you have a simple numeric vector of values:

> data2
 [1] 3 5 7 5 3 2 6 8 5 6 9 4 5 7 3 4
> table(data2)
data2
2 3 4 5 6 7 8 9
1 3 2 4 2 2 1 1

Here you use the table() command to organize the data into a simple contingency table. This table
shows you how many items in the data match up to the various integer values; you can see that there
are three 3s, for example, but only a single 8. You can visualize this better, perhaps, if you rewrite
the data in numerical order:

> sort(data2)
 [1] 2 3 3 3 4 4 5 5 5 5 6 6 7 7 8 9

Here the sort() command is used to reorder the data values; if you compare this to the table you
just created you can see more clearly what the table() command has done. You can use the table()
command on character data too; in the following example you have a simple vector of labels:

> graze
[1] "mow" "mow" "mow" "mow" "mow" "unmow" "unmow" "unmow" "unmow"
> table(graze)
graze
 mow unmow
 5 4

You can see from the table that there are five items in the mow treatment and four in the unmow
treatment.

Creating Contingency Tables from Complicated Data
The numeric data that go with the labels from the preceding section’s example are assembled into a
data frame like so:

> grass

124 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

 rich graze
1 12 mow
2 15 mow
3 17 mow
4 11 mow
5 15 mow
6 8 unmow
7 9 unmow
8 7 unmow
9 9 unmow

If you use the table() command on these data you get a contingency table like the following:

> table(grass)
 graze
rich mow unmow
 7 0 1
 8 0 1
 9 0 2
 11 1 0
 12 1 0
 15 2 0
 17 1 0

You see the numerical data in the first column, followed by a column for each of the graze treatments.
The table shows you how many times a particular numerical value cropped up in each of the graze
treatments.

When your data are all numeric you get a more complex table as a result, because each numeric value
in the second column is treated as a separate “level” and compared to each value in the first column. In
the following example you have a simple data frame that contains two columns of numeric data:

> fw
 count speed
Taw 9 2
Torridge 25 3
Ouse 15 5
Exe 2 9
Lyn 14 14
Brook 25 24
Ditch 24 29
Fal 47 34

> table(fw)
 speed
count 2 3 5 9 14 24 29 34
 2 0 0 0 1 0 0 0 0
 9 1 0 0 0 0 0 0 0
 14 0 0 0 0 1 0 0 0
 15 0 0 1 0 0 0 0 0
 24 0 0 0 0 0 0 1 0
 25 0 1 0 0 0 1 0 0
 47 0 0 0 0 0 0 0 1

Summary Tables ❘ 125

If you have more complex data frames (that is, with more than two columns), you get a more complex
result; you end up with multiple tables. Each of the individual tables shows the first two columns in
the data frame, but the values in the other columns are picked out one by one with all the various com-
binations. This can get complicated to say the least. Here is a simple example where you have a data
frame containing a column of numeric values and two columns of factors (character variables):

> pw
 height plant water
1 9 vulgaris lo
2 11 vulgaris lo
3 6 vulgaris lo
4 14 vulgaris mid
5 17 vulgaris mid
6 19 vulgaris mid
7 28 vulgaris hi
8 31 vulgaris hi
9 32 vulgaris hi
10 7 sativa lo
11 6 sativa lo
12 5 sativa lo
13 14 sativa mid
14 17 sativa mid
15 15 sativa mid
16 44 sativa hi
17 38 sativa hi
18 37 sativa hi

If you use a table() command on these data you get three tables produced as a result. The command
produces a table for each of the water treatments. Here only the first one is shown:

> table(pw)
, , water = hi

 plant
height sativa vulgaris
 5 0 0
 6 0 0
 7 0 0
 9 0 0
 11 0 0
 14 0 0
 15 0 0
 17 0 0
 19 0 0
 28 0 1
 31 0 1
 32 0 1
 37 1 0
 38 1 0
 44 1 0

126 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

The first table shown examines the situation for the first treatment; the factors are considered in
order so the hi treatment comes first (because of alphabetical sorting). The other factors are shown
in separate tables; the next one being for the lo treatment:

, , water = lo

 plant
height sativa vulgaris
 5 1 0
 6 1 1
 7 1 0
 9 0 1
...

Here just the first few lines are shown of the next table in the set. The final table in the example shows
the situation when the water treatment is set to mid:

, , water = mid

 plant
height sativa vulgaris
 5 0 0
 6 0 0
 7 0 0
 9 0 0
...

If you have more than a couple of columns of data, things can rapidly get out of hand, and you may
end up with a lot more output than you bargained for. You need a way to control which columns are
summarized by the table. You can do this with a bit of tweaking to the table() command.

Creating Custom Contingency Tables
Rather than use all the columns (or rows) of a data frame, you could create a contingency table that
uses only part of the data. In this situation you can actually select each separate row and column to
use, as detailed in the following sections.

Selecting Columns to Use in a Contingency Table
The table() command enables you to specify which columns of data you want to use to create your
contingency table; simply provide the names of the vector objects in the command instruction:

> table(height, water)
Error in table(height, water) : object 'height' not found

In this example though the command cannot find the objects you want because they are part of
the pw data frame. You can get around this in one of several ways. You could use $ and specify the
full name or you could use the attach() command to “open up” the data frame. In the following
example the $ syntax is used:

> table(pw$height, pw$water)

 hi lo mid
 5 0 1 0

Summary Tables ❘ 127

 6 0 2 0
 7 0 1 0
 9 0 1 0
 11 0 1 0
 14 0 0 2
 15 0 0 1
 17 0 0 2
 19 0 0 1
 28 1 0 0
 31 1 0 0
 32 1 0 0
 37 1 0 0
 38 1 0 0
 44 1 0 0

The result is a table that shows you a column for each of the three water treatments. Notice that
the names of the items are not given; the height and water labels are gone and you only get the
names of the three water treatments. If you had used the attach() command the names would be
shown. Of course, there is a way around this; you can use your own labels. To do so, specify the
names you require as labels as an instruction in the table() command like so:

> table(pw$height, pw$water, dnn = c('Ht', 'H2O'))
 H2O
Ht hi lo mid
 5 0 1 0
 6 0 2 0
 7 0 1 0
...

Here you have used a slightly different label than the name of the original vectors; you see the first
few lines of the table and can see your customized labels at the top. There is yet another way to get the
names of the vectors within the data frame recognized: you can use the with() command. This is like
using the attach() command but you do not have to remember to detach() the data afterwards.

The with() command works in a general manner. To use it you simply put in the name of the data you
want to access and then carry on with the command you wanted to use all in the same line, like so:

> with(pw, table(height, water))

Now the names of the data columns are available to the table() command and the labels reappear:

 water
height hi lo mid
 5 0 1 0
 6 0 2 0
 7 0 1 0
...

Selecting Rows to Use in a Contingency Table
If you want to use only certain rows of a data frame to form the basis for a contingency table, you
need to use a slightly different approach. Essentially this involves creating a matrix object and making
a contingency table from that. This topic is discussed in the next section.

128 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

Creating Contingency Tables from Matrix Objects
So far you have looked at using the table() command on vectors and data frames. You can use the
command on matrix objects too, but you need to remember that they have a slightly different structure.
Here is a matrix that you have met before; bird observation data:

> bird
 Garden Hedgerow Parkland Pasture Woodland
Blackbird 47 10 40 2 2
Chaffinch 19 3 5 0 2
Great Tit 50 0 10 7 0
House Sparrow 46 16 8 4 0
Robin 9 3 0 0 2
Song Thrush 4 0 6 0 0

When you use the table() command you get the following result:

> table(bird)
bird
 0 2 3 4 5 6 7 8 9 10 16 19 40 46 47 50
 9 4 2 2 1 1 1 1 1 2 1 1 1 1 1 1

The data in the matrix are treated like a single vector, so your resulting table displays accord-
ingly. The $ convention does not work with a matrix, so you are therefore also unable to use the
attach() command. You can, however, use the square brackets to pick out rows and columns to
make into your table:

> table(bird[,1], bird[,2], dnn = c('Gdn', 'Hedge'))
 Hedge
Gdn 0 3 10 16
 4 1 0 0 0
 9 0 1 0 0
 19 0 1 0 0
 46 0 0 0 1
 47 0 0 1 0
 50 1 0 0 0

In this (preceding) example you used the first and second columns and created your contingency
table; you need to specify the names for display using the dnn = instruction. You can do something
similar for row data:

> table(bird[3,], bird[1,], dnn = c('Gt. Tit', 'BlackBrd'))
 BlackBrd
Gt. Tit 2 10 40 47
 0 1 1 0 0
 7 1 0 0 0
 10 0 0 1 0
 50 0 0 0 1

Here you chose the third and first rows to compare and make up into a contingency table. Once again
you must include explicit names for your table display.

With a bit of manipulation you can make your matrix into a data frame and read the column names
using the with() command:

> with(as.data.frame(bird), table(Garden, Pasture))
 Pasture
Garden 0 2 4 7

Summary Tables ❘ 129

 4 1 0 0 0
 9 1 0 0 0
 19 1 0 0 0
 46 0 0 1 0
 47 0 1 0 0
 50 0 0 0 1

In this example you use the as.data.frame() command to temporarily convert the object to a
data frame.

Using Rows of a Data Frame in a Contingency Table
Using a matrix means that you are able to look at the rows to construct your contingency table. If
you have a data frame, perhaps you could use the same square bracket convention to do the same
thing? Try it in the following example:

> fw
 count speed
Taw 9 2
Torridge 25 3
Ouse 15 5
Exe 2 9
Lyn 14 14
Brook 25 24
Ditch 24 29
Fal 47 34

> table(fw[1,], fw[2,])
Error in sort.list(y) :
 'x' must be atomic for 'sort.list'
Have you called 'sort' on a list?

The short answer is no, you cannot! You could try the same trick as before and convert the object to
a matrix though:

> with(as.matrix(fw), table(fw[1,], fw[2,]))
Error in eval(substitute(expr), data, enclos = parent.frame()) :
 numeric 'envir' arg not of length one

However, this also fails. The only way to get this to work is to force each item in the table as a
matrix like so:

> table(as.matrix(fw)[1,], as.matrix(fw)[2,], dnn = c('Taw', 'Torridge'))
 Torridge
Taw 3 25
 2 1 0
 9 0 1

You could also make a new matrix and then apply the table() command to the new object:

> fw.mat = as.matrix(fw)
> table(fw.mat[1,], fw.mat[4,], dnn = c('Taw', 'Exe'))
 Exe
Taw 2 9
 2 0 1
 9 1 0
> rm(fw.mat)

130 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

Rotating Data Frames
You can rotate the data so that the rows become the columns and vice versa. You can use the t()
command to transpose a data frame like so:

> t(fw)
 Taw Torridge Ouse Exe Lyn Brook Ditch Fal
count 9 25 15 2 14 25 24 47
speed 2 3 5 9 14 24 29 34

Now the result is a matrix, so you need to use the square brackets to select the columns (that is, the
original rows) that you require:

> table(t(fw)[,1], t(fw)[,2], dnn = c('Taw', 'Torridge'))
 Torridge
Taw 3 25
 2 1 0
 9 0 1

This approach will also work on a matrix. You can use the t() command to rotate a matrix in
exactly the same way as for a data frame.

Selecting parts of a table object
A table is a special sort of matrix, and you deal with tables in similar ways to matrix objects. You can
extract various elements of a table object exactly as you would for a matrix object. In the following
activity you create a contingency table and select out various components of it.

tRy it out Selecting and Displaying Parts of a Contingency Table

Use the pw data object from the Beginning.RData file for this activity; you will use this to create
and examine a custom contingency table.

 1 . Use the pw data frame as the starting point for a custom contingency table:

> pw.tab = with(pw, table(height, water))

 2 . View the resulting contingency table:

> pw.tab
 water
height hi lo mid
 5 0 1 0
 6 0 2 0
 7 0 1 0
 9 0 1 0
 11 0 1 0
 14 0 0 2
 15 0 0 1
 17 0 0 2
 19 0 0 1
 28 1 0 0
 31 1 0 0
 32 1 0 0

Summary Tables ❘ 131

 37 1 0 0
 38 1 0 0
 44 1 0 0

 3 . Examine the table object structure using the str() command:

> str(pw.tab)
 'table' int [1:15, 1:3] 0 0 0 0 0 0 0 0 0 1 ...
 - attr(*, "dimnames")=List of 2
 ..$ height: chr [1:15] "5" "6" "7" "9" ...
 ..$ water : chr [1:3] "hi" "lo" "mid"

 4 . Now display only the first three rows of the contingency table:

> pw.tab[1:3,]
 water
height hi lo mid
 5 0 1 0
 6 0 2 0
 7 0 1 0

 5 . Next display the first three rows of the first column:

> pw.tab[1:3,1]
5 6 7
0 0 0

 6 . Now display the first three rows of the first and second columns:

> pw.tab[1:3,1:2]
 water
height hi lo
 5 0 1
 6 0 2
 7 0 1

 7 . Display the column labeled hi:

> pw.tab[,'hi']
 5 6 7 9 11 14 15 17 19 28 31 32 37 38 44
 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

 8 . Now display the first three rows of two of the columns:

> pw.tab[1:3, c('hi', 'mid')]
 water
height hi mid
 5 0 0
 6 0 0
 7 0 0

 9 . Display some of the columns in a new order:

> pw.tab[1:3, c('mid', 'hi')]
 water
height mid hi
 5 0 0
 6 0 0
 7 0 0

132 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

 10 . Try displaying two columns using a mix of name and number:

> pw.tab[,c('hi',3)]
Error: subscript out of bounds

 11 . Look at the length of the table object:

> length(pw.tab)
[1] 45

 12 . Finally, display some consecutive items:

> pw.tab[16:30]
 [1] 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0

How It Works

The first step is to create the table object using two of the columns to produce a simple contingency
table. The str() command shows that the resulting object is a table. The table can be displayed much
like a matrix by using the square brackets to define the rows and columns required. The rows and col-
umns can be specified as numbers or names (if appropriate), but you cannot mix names and numbers
in the same command.

The length() command produces a result that reflects the number of items in the table; this is similar
to a matrix but different from a data frame (where the command produced the number of columns).

A table object is a special kind of object in its own right, but it also has certain properties of a
matrix. This will become important to remember when you begin to develop logical tests, as you
will see shortly in the section, “Testing for Table Objects.”

converting an object into a table
You can convert an object into a table by using the as.table() command if it is already a matrix
because they are very similar objects. If you have a data frame, however, you must convert it to a
matrix first and then convert that into a table. You can do this in one go as follows (however, if you
have no row names you may end up with character labels rather than numbers):

> as.table(as.matrix(mf))
 len sp alg no3 bod
A 20.00 12.00 40.00 2.25 200.00
B 21.00 14.00 45.00 2.15 180.00
C 22.00 12.00 45.00 1.75 135.00
D 23.00 16.00 80.00 1.95 120.00
E 21.00 20.00 75.00 1.95 110.00
F 20.00 21.00 65.00 2.75 120.00
G 19.00 17.00 65.00 1.85 95.00
...

In this case your row names have ended up as uppercase characters; here you can see only the first
seven rows of the result. If you try to convert a table directly into an object you get an error, like so:

> as.table(mf)
Error in as.table.default(mf) : cannot coerce into a table

Summary Tables ❘ 133

If you have a list object you have to do a few contortions to get the data in the right form. First, you
must use the stack() command to get the individual elements out in a frame-like form. Then you can
convert to a matrix and finally a table; quite a performance!

In the following example you begin with a simple list containing only two items:

> grass.l
$mow
[1] 12 15 17 11 15

$unmow
[1] 8 9 7 9

> gr.tab = as.table(as.matrix(stack(grass.l)))

> colnames(gr.tab) = c('spp', 'graze')

> gr.tab
 spp graze
A 12 mow
B 15 mow
C 17 mow
D 11 mow
E 15 mow
F 8 unmow
G 9 unmow
H 7 unmow
I 9 unmow

You have to set the names for the columns separately because the stack() command produces
default names of values and ind. Note that you use the colnames() command to alter the names.

testing for table objects
You can test to see if an object is a table using the is.table() command. This produces a TRUE
result if you do have a table and a FALSE result if you do not:

> is.table(bird)
[1] FALSE
> is.table(gr.tab)
[1] TRUE

You can also use the class() command to see if an object is a table directly:

> class(gr.tab)
[1] “table”

The class() command can form the basis of a logical test by using the if() command in the
following manner:

> if(class(gr.tab) =='table') TRUE else FALSE
[1] TRUE

134 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

NOTE The if() command is useful in enabling options. The basic form of the
command is as follows:

if(condition) what.to.do.if.TRUE else what.to.do.if.FALSE

You set the condition to test in the main brackets. After this you put what to do
if the result of the condition is TRUE. The else part allows you to specify what to
do if the result of the condition is FALSE.

complex (Flat) tables
You can use an alternative version of the table() command to make “flat” tables; that is, rather
than make several tables, the rows or columns are subdivided to make a single table. The command
is ftable() and you can use it in several ways.

Making “Flat” Contingency Tables
In the following example you see the plant watering data frame that you met earlier. This has a column
of numerical height data and two columns of factors, plant and water. When you create the “flat”
contingency table you get something like the following:

> ftable(pw)
 water hi lo mid
height plant
5 sativa 0 1 0
 vulgaris 0 0 0
6 sativa 0 1 0
 vulgaris 0 1 0
7 sativa 0 1 0
 vulgaris 0 0 0
9 sativa 0 0 0
 vulgaris 0 1 0
11 sativa 0 0 0
 vulgaris 0 1 0
14 sativa 0 0 1
 vulgaris 0 0 1
15 sativa 0 0 1
 vulgaris 0 0 0
17 sativa 0 0 1
 vulgaris 0 0 1
19 sativa 0 0 0
 vulgaris 0 0 1
28 sativa 0 0 0
 vulgaris 1 0 0
31 sativa 0 0 0
 vulgaris 1 0 0
32 sativa 0 0 0
 vulgaris 1 0 0
37 sativa 1 0 0
 vulgaris 0 0 0
38 sativa 1 0 0

Summary Tables ❘ 135

 vulgaris 0 0 0
44 sativa 1 0 0
 vulgaris 0 0 0

Here you can see that the rows are subdivided between the two levels of the plant factor.

You can use the command much like the table() command and specify two or more columns of the
data to use in the table. The order of the columns you specify are used to construct the contingency
table. You can also use a slightly different syntax to tell R what sort of output you require; the general
form of the command is as follows:

ftable(column.items ~ row.items, data = data.object)

You use the tilde (~) character to create a formula where the left side contains the variables you
want to use as the row headings (in other words, stuff that forms the columns), separated by com-
mas. After the tilde you put the names of the vectors that you want to form the row items.

These commands give you great flexibility in creating contingency tables. In the following activity
you practice creating some “flat” contingency tables.

tRy it out Create “Flat” Contingency Tables from Complex Data

Use the pw data from the Beginning.RData file for this activity, which you will use to create a
“flat” contingency table.

 1 . Start by creating a contingency table from the pw data object. Use the columns in the order in
which they appear in the original data:

> with(pw, ftable(height, plant, water))
 water hi lo mid
height plant
5 sativa 0 1 0
 vulgaris 0 0 0
6 sativa 0 1 0
 vulgaris 0 1 0
7 sativa 0 1 0
 vulgaris 0 0 0
9 sativa 0 0 0
 vulgaris 0 1 0
...

 2 . Now create another contingency table but specify the columns in a new order:

> with(pw, ftable(height,water,plant))
 plant sativa vulgaris
height water
5 hi 0 0
 lo 1 0
 mid 0 0
6 hi 0 0
 lo 1 1
 mid 0 0
...

136 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

 3 . Next try creating a flat table using the ~ syntax. Keep the same column order as the first table you
created:

> ftable(plant ~ height + water, data = pw)
 plant sativa vulgaris
height water
5 hi 0 0
 lo 1 0
 mid 0 0
6 hi 0 0
 lo 1 1
 mid 0 0
...

 4 . Now try to create the same table as the first but using the new ~ syntax:

> ftable(water ~ height + plant, data = pw)
 water hi lo mid
height plant
5 sativa 0 1 0
 vulgaris 0 0 0
6 sativa 0 1 0
 vulgaris 0 1 0
...

 5 . Now specify the main response variable as the main grouping variable in your flat table:

> ftable(height ~ water + plant, data = pw)
 height 5 6 7 9 11 14 15 17 19 28 31 32 37 38 44
water plant
hi sativa 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
 vulgaris 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
lo sativa 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 vulgaris 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
mid sativa 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
 vulgaris 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

 6 . Finally, re-create the last table without the ~ syntax:

> with(pw, ftable(water, plant, height))

How It Works

To start with you had to use the with() command so that the names of the columns in the original
data could be “read” by R. The order in which you enter the columns is very important; in this case
height was specified first and this forms the column margin of the table. The next item inserted was
plant followed by water; is the order in which they appear. If you change the order, obviously the
appearance of the table is different and your data are summarized in a different way that may make
more (or less) sense. In the next table height was kept as the main column, but the order of the factor
variables was swapped.

The ~ syntax allows great flexibility and enables you to create contingency tables relatively easily. The
column specified before the ~ forms the main body of the table, whereas those to the right of the ~ form
the groupings of the table in the order they were specified. The final example shows that the most com-
pact table uses the main response variable as the main body.

Summary Tables ❘ 137

You can extract parts of your table exactly using the square brackets, like you did in an earlier
activity. In the next example the contingency table contains two data columns; these relate to the
different levels in the plant column:

> gr.t = ftable(plant ~ height + water, data = pw)

> gr.t
 plant sativa vulgaris
height water
5 hi 0 0
 lo 1 0
 mid 0 0
6 hi 0 0
 lo 1 1
 mid 0 0
...

You can now use the square brackets to extract rows and columns of the resulting contingency
table object.

> gr.t[1:3,]
 [,1] [,2]
[1,] 0 0
[2,] 1 0
[3,] 0 0

Here only the first three rows are selected. Notice that the names are not displayed. The simplest way to
extract a part of the object is to make a logical unit of some sort and to create a separate matrix from it
and name that. For example, you can use the first three rows from the preceding example; these relate
to the height of 5. Make a matrix and give it sensible names before displaying the full result:

> gr.sub = gr.t[1:3,]
> gr.sub
 [,1] [,2]
[1,] 0 0
[2,] 1 0
[3,] 0 0

> colnames(gr.sub) = c('sativa', 'vulgaris')
> rownames(gr.sub) = c('hi','lo','mid')

> gr.sub
 sativa vulgaris
hi 0 0
lo 1 0
mid 0 0

You could also do this in one go by specifying the names as part of the command like so:

> gr.sub = matrix(gr.t[1:3,],ncol =2, dimnames = list(c('hi','lo','mid'),
c('sativa','vulgaris')))

This time you have to use the matrix() command to set the row and column names (using the
dimnames instruction).

138 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

Making Selective “Flat” Contingency Tables
A contingency table is best kept as a complete item. As you saw earlier, you can subset a “flat” table
using the square brackets syntax. However, this is not a straightforward process. It would be better if
you could create a contingency table right at the outset that matched certain conditions. The following
activity shows how you can do this.

tRy it out Creating Selective “Flat” Contingency Tables

Use the pw data object from the Beginning.RData file for this activity, which you will use to
create a “flat” contingency table.

 1 . Start by creating a “flat” contingency table with a conditional column:

> with(pw, ftable(height==14, water, plant))
 plant sativa vulgaris
 water
FALSE hi 3 3
 lo 3 3
 mid 2 2
TRUE hi 0 0
 lo 0 0
 mid 1 1

 2 . Now add an additional condition to another column:

> with(pw, ftable(height==14, water=='hi', plant))
 plant sativa vulgaris

FALSE FALSE 5 5
 TRUE 3 3
TRUE FALSE 1 1
 TRUE 0 0

 3 . Make a new data object as a subset of the original data:

> pw.t = pw[which(pw$height==14),]

> pw.t
 height plant water
4 14 vulgaris mid
13 14 sativa mid

 4 . Finally, create a “flat” table from the new (subsetted) data:

> with(pw.t, ftable(height, plant, water))
 water hi lo mid
height plant
14 sativa 0 0 1
 vulgaris 0 0 1

How It Works

When you insert a conditional column into the ftable() command, the resulting contingency table
includes the data for both TRUE and FALSE results of the condition. You can add conditional statements
for other columns (and also more complex conditional statements for the single column) and produce
more TRUE and FALSE results.

Summary Tables ❘ 139

To make a selective ftable object you must create a new data frame that contains only the data you
require. Now you can use the ftable() command on the new data to produce a result that contains
no TRUE or FALSE results, only “real” data.

Now you have seen how to create “flat” contingency tables and how to be selective when doing so,
using only certain data and even including conditional statements to create a selective table. You
now need to be able to tell if an object is a “flat” table; that is the subject of the next section.

testing “Flat” table objects
You can use the class(), command to see what kind of object you are dealing with. The class()
command gives you a label for each kind of object. The class of an object is used to determine how
R handles it; you can find out what an object is and also set the class of an object. The bottom line
is that you can use the class to test if your object is an ftable object by looking at its class like so:

> if(class(gr.t) == 'ftable') TRUE else FALSE
[1] TRUE

Here you look to see if the class is “ftable”; if it is, you give a TRUE result, otherwise you get a
FALSE result.

Summary commands for tables
A table is usually a way of summarizing some data and is often the end point of an operation (for
example, making a contingency table). At times, however, you may want to perform certain actions on
a table itself. You have already met some commands that could be useful, for example rowMeans(),
colSums(), and apply(). These will work equally well on a table as they will on a matrix. However,
you can use some additional commands, which are summarized in Table 4-5.

taBle 4-5: Table Summary Commands

SummaRy command explanation

rowSums()
colSums()

Determines the sum of rows or columns for a data frame, matrix, or
table object .

rowMeans()
colMeans()

Determines the mean of rows or columns for a data frame, matrix,
or table object .

apply(x, MARGIN, FUN) Applies a function to rows or columns of a data frame, matrix, or
table . If MARGIN = 1 the rows are used, if 2 the columns are used .

prop.table(x,
margin = NULL, FUN)

Returns the contents of a data frame, matrix, or table as a propor-
tion of the total specified margin . The default uses the grand total,
margin = 1 uses row totals, and margin = 2 uses column totals .

addmargins(A,
margin = c(1, 2),
FUN = sum)

Returns a function applied to rows and/or columns of a matrix
or table .

140 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

In the following activity you try out some of these summary commands to get a feeling for what
they can do for you. You use a table of bird observation data that you have met before. The object
in question is actually a matrix object but, as you have seen, a matrix acts very much like a table. In
this case the way the data are arranged forms a contingency table. Each cell in the table is a unique
combination of two factors.

tRy it out Carrying Out Summary Commands on a Contingency Table

Use the bird data from the Beginning.RData file for this activity, which you will use as the
contingency table to explore.

 1 . Start by looking at the bird data object:

> bird
 Garden Hedgerow Parkland Pasture Woodland
Blackbird 47 10 40 2 2
Chaffinch 19 3 5 0 2
Great Tit 50 0 10 7 0
House Sparrow 46 16 8 4 0
Robin 9 3 0 0 2
Song Thrush 4 0 6 0 0

 2 . Use the rowSums() command to look at sums of rows:

> rowSums(bird)
 Blackbird Chaffinch Great Tit House Sparrow Robin Song Thrush
 101 29 67 74 14 10

 3 . Now try the apply() command to look at column sums:

> apply(bird, MARGIN = 2, FUN = sum)
 Garden Hedgerow Parkland Pasture Woodland
 175 32 69 13 6

 4 . Use the margin.table() command to get an overall total:

> margin.table(bird)
[1] 295

 5 . Use the margin.table() command to determine row sums:

> margin.table(bird, 1)
 Blackbird Chaffinch Great Tit House Sparrow Robin Song Thrush
 101 29 67 74 14 10

 6 . Now use the margin.table() command to determine column sums:

> margin.table(bird, margin = 2)
 Garden Hedgerow Parkland Pasture Woodland
 175 32 69 13 6

 7 . Use the prop.table() command to display the table data as proportions of the total sum:

> prop.table(bird)
 Garden Hedgerow Parkland Pasture Woodland
Blackbird 0.15932203 0.03389831 0.13559322 0.006779661 0.006779661
Chaffinch 0.06440678 0.01016949 0.01694915 0.000000000 0.006779661

Summary Tables ❘ 141

Great Tit 0.16949153 0.00000000 0.03389831 0.023728814 0.000000000
House Sparrow 0.15593220 0.05423729 0.02711864 0.013559322 0.000000000
Robin 0.03050847 0.01016949 0.00000000 0.000000000 0.006779661
Song Thrush 0.01355932 0.00000000 0.02033898 0.000000000 0.000000000

 8 . Add a margin instruction to the prop.table() command to display the table as proportions of
the row totals:

> prop.table(bird, margin = 1)
 Garden Hedgerow Parkland Pasture Woodland
Blackbird 0.4653465 0.0990099 0.3960396 0.01980198 0.01980198
Chaffinch 0.6551724 0.1034483 0.1724138 0.00000000 0.06896552
Great Tit 0.7462687 0.0000000 0.1492537 0.10447761 0.00000000
House Sparrow 0.6216216 0.2162162 0.1081081 0.05405405 0.00000000
Robin 0.6428571 0.2142857 0.0000000 0.00000000 0.14285714
Song Thrush 0.4000000 0.0000000 0.6000000 0.00000000 0.00000000

 9 . Now use the addmargins() command to determine a row of mean values for the table:

> addmargins(bird, 1, mean)
 Garden Hedgerow Parkland Pasture Woodland
Blackbird 47.00000 10.000000 40.0 2.000000 2
Chaffinch 19.00000 3.000000 5.0 0.000000 2
Great Tit 50.00000 0.000000 10.0 7.000000 0
House Sparrow 46.00000 16.000000 8.0 4.000000 0
Robin 9.00000 3.000000 0.0 0.000000 2
Song Thrush 4.00000 0.000000 6.0 0.000000 0
mean 29.16667 5.333333 11.5 2.166667 1

 10 . Use the addmargins() command to work out a column median for the table:

> addmargins(bird, 2, median)
 Garden Hedgerow Parkland Pasture Woodland median
Blackbird 47 10 40 2 2 10
Chaffinch 19 3 5 0 2 3
Great Tit 50 0 10 7 0 7
House Sparrow 46 16 8 4 0 8
Robin 9 3 0 0 2 2
Song Thrush 4 0 6 0 0 0

How It Works

The rowSums() and colMeans() commands are general; you have used these before to work out sums
and means for rows and columns. The apply() command is more flexible; you use it to apply a function
to rows (MARGIN = 1) or columns (MARGIN = 2).

The margin.table() command is essentially the same as apply() when used with FUN = sum. If you
leave out the margin instruction you get the complete total. Using margin = 1 gives the row sums and
margin = 2 returns the column sums.

You can use the prop.table() command to display the table data as proportions of the total sum. You
can add an index for the rows or columns in the same way as for the margin.table() command; in this
way you can express the data in your table as proportions of the various row or column sums.

The addmargins() command enables you to use any function on rows or columns. The margin part
defaults to both rows and columns, whereas the function applied defaults to the sum. In this case,
the row/column index works like so: A value of 1 refers to rows, but the function is applied to the

142 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

row items. Essentially, you get a row of results. In most situations you are going to use the function
to produce summaries for both rows and columns.

You can see that you have several ways to achieve the same result. In some cases one command is a
simpler version of something more complex but in others subtle differences exist.

cross tabulation
The table-creating commands that you have looked at so far build up frequencies of observations
across categories. However, you may already have the frequency data, and in this case you need to
reassemble the data into a tabular format. You met one table that had already been created when
you looked at the bird observation data. If you look at the raw data file, you see that there are three
columns: one for the species, one for the habitats, and one for the quantity (that is, the frequency of
observations):

> birds
 Species Habitat Qty
1 Blackbird Garden 47
2 Chaffinch Garden 19
3 Great Tit Garden 50
4 House Sparrow Garden 46
5 Robin Garden 9
6 Song Thrush Garden 4
7 Blackbird Parkland 40
8 Chaffinch Parkland 5
9 Great Tit Parkland 10
10 House Sparrow Parkland 8
11 Song Thrush Parkland 6
12 Blackbird Hedgerow 10
13 Chaffinch Hedgerow 3
14 House Sparrow Hedgerow 16
15 Robin Hedgerow 3
16 Blackbird Woodland 2
17 Chaffinch Woodland 2
18 Robin Woodland 2
19 Blackbird Pasture 2
20 Great Tit Pasture 7
21 House Sparrow Pasture 4

These data are in data frame format and were read into R using the read.csv() command. Your
task is to reorganize the data into a contingency table; if you try this using the table() command
you end up with a simple table like so:

> with(birds, table(Species, Habitat))
 Habitat
Species Garden Hedgerow Parkland Pasture Woodland
 Blackbird 1 1 1 1 1
 Chaffinch 1 1 1 0 1
 Great Tit 1 0 1 1 0
 House Sparrow 1 1 1 1 0
 Robin 1 1 0 0 1
 Song Thrush 1 0 1 0 0

Summary Tables ❘ 143

This is not really what you want because this shows you only which categories have observations
(your data are reduced to ones and zeros). If you add the Qty column into the mix you end up with
multiple tables, one for each Qty:

> with(birds, table(Species,Habitat,Qty))
, , Qty = 2

 Habitat
Species Garden Hedgerow Parkland Pasture Woodland
 Blackbird 0 0 0 1 1
 Chaffinch 0 0 0 0 1
 Great Tit 0 0 0 0 0
 House Sparrow 0 0 0 0 0
 Robin 0 0 0 0 1
 Song Thrush 0 0 0 0 0

, , Qty = 3

 Habitat
Species Garden Hedgerow Parkland Pasture Woodland
 Blackbird 0 0 0 0 0
 Chaffinch 0 1 0 0 0
 Great Tit 0 0 0 0 0
 House Sparrow 0 0 0 0 0
 Robin 0 1 0 0 0
 Song Thrush 0 0 0 0 0
...

Here just the first couple of tables produced are shown. The ftable() command gives you a single
table, but you still end up with 1s and 0s:

> with(birds, ftable(Species,Habitat, Qty))
 Qty 2 3 4 5 6 7 8 9 10 16 19 40 46 47 50
Species Habitat
Blackbird Garden 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 Hedgerow 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 Parkland 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
 Pasture 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Woodland 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chaffinch Garden 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 Hedgerow 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 Parkland 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 Pasture 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Woodland 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
...

The first few lines of the resulting table are shown here. You want to end up with the original frequency
data (titled Qty in the data frame). To do that you use a cross-tabulation command called xtabs(). The
basic form of the command is as follows:

xtabs(freq.data ~ categories.list, data)

144 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

Notice that you have the tilde (~) symbol like you met when using the ftable() command. On the
left of the ~ you put the name of the frequency data; on the right you put the categories you want to
cross-tabulate separated by the plus sign. The first variable after the ~ forms the row categories and
the next variable you type forms the columns categories. At the end you type the name of the data
object (so that R can “find” the variables). For the bird observation data you would type something
like the following:

> birds.t = xtabs(Qty ~ Species + Habitat, data = birds)
> birds.t
 Habitat
Species Garden Hedgerow Parkland Pasture Woodland
 Blackbird 47 10 40 2 2
 Chaffinch 19 3 5 0 2
 Great Tit 50 0 10 7 0
 House Sparrow 46 16 8 4 0
 Robin 9 3 0 0 2
 Song Thrush 4 0 6 0 0

This does the job nicely and now you see the data rearranged as required.

Testing Cross-Table (xtabs) Objects
When you use the xtabs() command, the object you create is a kind of table and gives a TRUE result
using the is.table() command. It also gives a TRUE result if you use the as.matrix() command. As
far as R is concerned it holds two sorts of class. You can see this using the class() command:

> class(birds.t)
[1] "xtabs" "table"

If you want to test for the object being an xtabs object you have a problem, because now the class
result has two elements, shown in the following:

> if(class(birds.t) == 'xtabs') TRUE else FALSE
[1] TRUE
Warning message:
In if (class(birds.t) == "xtabs") TRUE else FALSE :
 the condition has length > 1 and only the first element will be used

When you try it you get a result of sorts but you also get an error message. You are lucky to get a
result simply because the “xtabs” result was the first. In reality, you need a way of scanning the entire
“result” and picking out the bit you want, wherever it may be. You can do that with the following:

> if(any(class(birds.t) == 'xtabs')) TRUE else FALSE
[1] TRUE

The any() command enables you to match any of the elements in a vector. In this case the upshot is
that you will pick out the xtabs item even if it is not the first in the bunch.

A Better Class Test
The commands for testing for object types that you have seen so far are not the only ones at your
disposal. Two other commands are especially useful:

➤➤ is(object, "type")

➤➤ inherits(object, "type")

Summary Tables ❘ 145

Both these commands return a TRUE result if the class() of an object matches the “type” you specify
in the instruction. These are especially powerful and useful because they mean that you do not need to
use complicated if() and any() commands!

Recreating Original Data from a Contingency Table
If you have an xtabs object, you can reassemble it into a data frame using the as.data.frame()
command:

> as.data.frame(birds.t)
 Species Habitat Freq
1 Blackbird Garden 47
2 Chaffinch Garden 19
3 Great Tit Garden 50
4 House Sparrow Garden 46
5 Robin Garden 9
6 Song Thrush Garden 4
7 Blackbird Hedgerow 10
8 Chaffinch Hedgerow 3
9 Great Tit Hedgerow 0
10 House Sparrow Hedgerow 16
11 Robin Hedgerow 3
12 Song Thrush Hedgerow 0
13 Blackbird Parkland 40
14 Chaffinch Parkland 5
15 Great Tit Parkland 10
16 House Sparrow Parkland 8
17 Robin Parkland 0
18 Song Thrush Parkland 6
19 Blackbird Pasture 2
20 Chaffinch Pasture 0
21 Great Tit Pasture 7
22 House Sparrow Pasture 4
23 Robin Pasture 0
24 Song Thrush Pasture 0
25 Blackbird Woodland 2
26 Chaffinch Woodland 2
27 Great Tit Woodland 0
28 House Sparrow Woodland 0
29 Robin Woodland 2
30 Song Thrush Woodland 0

Now you have re-created the original data with one or two minor differences. The Qty column has
been renamed Freq and the rows with zero frequency are included. Neither of these are significant
issues; you can alter the name of the Freq column by amending the command like so:

> as.data.frame(birds.t, responseName = 'Qty')

If you want to remove the zero data you need to take your new data frame and select those rows
with a Freq greater than zero, like so:

> birds.td = as.data.frame(birds.t)
> birds.td = birds.td[which(birds.td$Freq > 0),]

146 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

You begin by creating a new object to accept the data frame; the object is called birds.td in this
example. Then you select all rows that have Freq greater than 0. Notice that you have overwritten
the original data frame with the amended one in this example. This is not essential but it is done
here so that you do not have to delete a temporary object later. If you make a mistake you can easily
recall the previous command and start over again.

If you have a contingency table that is not a table object but something like a matrix, then you need
to alter the class of the object before you convert the object to a data frame. This is the subject of the
next section.

Switching Class
You can use the class() command to alter which class an object is as well as see what class the
object currently is. This can be useful for occasions where an object needs to be in a certain class
for a command to operate. In the following example you can see the bird object queried and then
reset using the class() command:

> class(bird)
[1] “matrix”
> class(bird) = 'table'

The matrix of bird observations is now classed as a table. You can now proceed to create a data
frame from the table using the as.data.frame() command:

> bird.df = as.data.frame(bird)
 Var1 Var2 Freq
1 Blackbird Garden 47
2 Chaffinch Garden 19
3 Great Tit Garden 50
4 House Sparrow Garden 46
5 Robin Garden 9
6 Song Thrush Garden 4
7 Blackbird Hedgerow 10
8 Chaffinch Hedgerow 3
9 Great Tit Hedgerow 0
10 House Sparrow Hedgerow 16
...

Notice that the columns are not labeled appropriately and that the zero data are still intact. You can
alter the names of the columns using the names() command and reconstruct the data omitting the
zero rows as you saw in the preceding section. Here is the entire process:

> bird.tt = bird
> class(bird.tt) = 'table'
> bird.tt = as.data.frame(bird.tt)
> names(bird.tt) = c('Species', 'Habitat', 'Qty')
> bird.tt = bird.tt[which(bird.tt$Qty > 0),]
> rownames(bird.tt) = as.numeric(1:length(rownames(bird.tt)))

In the first command you simply create a duplicate matrix to work on, keeping your original intact.
The second command changes the class to “table”. The third command creates the data frame of

Summary ❘ 147

original values. The fourth command alters the names of the columns. The penultimate command
selects out the data that are greater than zero, effectively deleting 0 observations. The final com-
mand reinstates the row index labels to a continuous sequence.

SummaRy
➤➤ You can summarize data items using the summary() command, which may give a specific

result or a general summary.

➤➤ Specific summary commands include mean(), median(), max(), min(), sd(), quantile(),
and length().

➤➤ Cumulative statistics can be obtained via the cumsum() and cummax() commands. These can
form the basis of simple custom functions to calculate for (for example, the running mean).

➤➤ Data frame and matrix objects can have summary functions applied to the rows and col-
umns (for example, colSums(), colMeans(), rowSums(), and rowMeans() commands). The
apply() command allows any function to be applied to rows or columns. The lapply()
and sapply() commands are special variants designed to work on list objects.

➤➤ Contingency tables can be made using the table() command; the ftable() command
creates “flat” tables for use with more complex data.

➤➤ You can convert raw data into a contingency table using the xtabs() command. This cross
tabulation is similar to the PivotTable of Excel.

➤➤ The class() command can be used to tell what kind of object you are dealing with and can
form the basis of a logical test.

exeRciSeS

You can find answers to the exercises in Appendix A .

Use the Beginning.RData file for these exercises; the file contains the required data objects .

 1 . Have a look at the mf data object . Determine what kind of object this is and carry out some
simple statistical summaries on these data .

 2 . Look at the bfs data object . Construct contingency tables using both the table() and
ftable() commands . How can you get one command to produce the same layout of table as
the other and what is the key difference between these results?

 3 . Look at the invert data object . Here you can see a data frame with three columns . Use
cross tabulation to construct a contingency table showing the relationship between Taxa and
Habitat . Save the resulting table as an object . What kind of object do you have and how can
you reconstruct the original data?

148 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

 ⊲ what you leaRned in thiS chapteR

topic key pointS

Summarizing objects:

summary()

The summary() command is a general command that
provides a summary of an object . If you have numerical
data, then you get a numerical summary (for example,
mean, max, min) but if the data are text, you get a note of
how many different items you have .

Using the summary() command on the result of many
analytical routines produces a special summary suited to
the kind of analysis performed .

Summarizing samples:

mean()

median()

max()

min()

sd()

var()

length()

sum()

quantile()

fivenum()

Numerical samples can be summarized by many commands .
Simple commands like mean() produce a single result (the
mean), whereas others produce several . The quantile()
command, for example, produces five values as its result
(the five basic quartiles) .

cumulative statistics:

cumsum()

cummax()

cummin()

cumproduct()

seq_along()

Some commands produce cumulative values, for example
the cumsum() command results in the cumulative sum of
a numeric sample . The seq_along() command creates a
simple index .

These commands can be combined and used to create a
range of cumulative statistics . For example the running mean:

cumsum(my.data) / seq(along = my.data)

Summarizing rows and columns:

colSums()

colMeans()

rowSums()

rowMeans()

apply()

lapply()

sapply()

The rows and columns of two-dimensional data objects
can be summarized in various ways . The colSums() and
rowMeans() commands, for example, produce the sum and
mean values for columns and rows, respectively .

The apply() command is more flexible in that any function
can be applied to the columns (default) or rows of a data
frame or matrix . The lapply() and sapply() commands
are similar but are designed to work with list objects .

Summary ❘ 149

topic key pointS

contingency tables and cross
tabulation:

table()

ftable()

xtabs()

Contingency tables can be created using the table()
command . When the data contains several columns, a “flat”
table can be produced using the ftable() command .

Data can be cross-tabulated to form contingency tables
using the xtabs() command .

Contingency tables can be reorganized into a data frame
using the as.data.frame() command .

table summaries:

margin.table()

prop.table()

addmargins()

Tables can be summarized in exactly the same way as data
frames and matrix objects by using apply(), for example .
In addition, several commands are aimed explicitly at
contingency tables . The margin.table() command gives
sums for rows/columns . The prop.table() command
determines the proportion that table entries make toward the
total . The addmargins() command applies any function to
rows/columns of a table .

testing table objects:

is.table()

is.matrix()

class()

any()

is(object, “type”)

inherits(object, “type”)

You can test to see if an object is of a certain type; using
is.table() and is.matrix() commands, for example,
will test for a table and a matrix, respectively . These
commands produce a TRUE or FALSE result .

The class() command can be used to view or set the
current type of an object . Objects can have more than one
class so if a test is required the any() command can be
used to match any of the classes that may be present .

The is() and inherits() commands can extract the class
of an object directly and return a TRUE result if the class
matches the “type” .

logic and testing:

for()

if() else

any()

The for() command can be used to create loops (for
example, in creating cumulative statistics like a running
median) .

The if() command is used to test some condition and
carry out a command if the result is TRUE . It can add the
command else to the end to carry out a command when
the result is FALSE .

The any() command can be used in testing conditions to
match any item in a list .

continues

150 ❘ chapteR 4 data: descrIptIve statIstIcs and taBulatIon

topic key pointS

programming/custom functions:

any()

for()

if() else

function()

The any() command enables the matching of any element
in a list containing several items .

The for() command is used to create programming loops .

The if() command is used in logical testing of some
condition and can be paired with else to provide an
alternative .

Customized commands can be created using the
function() command .

creating sequences:

seq()

The seq() command produces sequences of values .

Reading data objects:

attach()

detach()

with()

Variables contained within other data objects, such as
the columns of a data frame, are usually inaccessible to
R . They can be accessed using the $ syntax (for example,
my.data$column) .

Alternatively, the enclosing object can be “opened”
using the attach() command . The detach() command
closes the enclosing object .

The with() command enables temporary access to an
enclosing object .

 ⊲ what you leaRned in thiS chapteR (continued)

	Beginning R
	Chapter 4: Data: Descriptive Statistics and Tabulation
	Summary Commands
	Summarizing Samples
	Summary Tables
	Summary

